131 research outputs found

    Identification of Two Vulnerability Features: A New Framework for Electrical Networks Based on the Load Redistribution Mechanism of Complex Networks

    Get PDF
    This paper proposes a new framework to analyze two vulnerability features, impactability and susceptibility, in electrical networks under deliberate attacks based on complex network theory: these two features are overlooked but vital in vulnerability analyses. To analyze these features, metrics are proposed based on correlation graphs constructed via critical paths, which replace the original physical network. Moreover, we analyze the relationship between the proposed metrics according to degree from the perspective of load redistribution mechanisms by adjusting parameters associated with the metrics, which can change the load redistribution rules. Finally, IEEE 118- and 300-bus systems and a realistic large-scale French grid are used to validate the effectiveness of the proposed metrics

    The additions of Nitrogen and Sulfur synergistically decrease the release of Carbon and Nitrogen from litter in a subtropical forest

    Get PDF
    Atmospheric nitrogen (N) and sulfur (S) deposition in subtropical forests has increased rapidly and the current level is very high, thus seriously affecting nutrient (e.g., N and phosphorus (P)) release from litter. However, the specific effects of S addition and its interaction with N on the release of carbon (C), N, and P from litter in subtropical evergreen broadleaved forests are unclear. Therefore, a two-year field experiment was performed using a litterbag method in a subtropical evergreen broadleaved forest in western China to examine the responses of litter decomposition and nutrient release to the control (CK), added N (+N), added S (+S), and added N and S (+NS) treatments. The results showed that the remaining litter mass, lignin, cellulose, C, N, P, and litter N/P ratio were higher, whereas the litter C/N ratio and soil pH were lower in the fertilization treatments than in CK. The annual decomposition coefficients (k-values) in the +N, +S, and +NS treatments were 0.384 ± 0.002, 0.378 ± 0.002, and 0.374 ± 0.001 year−1, respectively, which were significantly lower than the k-values in CK (0.452 ± 0.005 year−1, p < 0.05). The remaining mass, lignin, cellulose, C, and litter N/P ratio were higher, whereas the soil pH was lower in the +NS treatment than in the +N and +S. The interactive effects of N addition and S addition on the remaining litter lignin, cellulose, C, N, and P; the litter C/N, C/P, and N/P ratios; and the soil pH were significant (p < 0.05). In conclusion, the addition of N and S synergistically decreased the degradation of lignin and cellulose and the release of C and N and increased the litter N/P ratio, suggesting that external N and S inputs synergistically slowed the release of C and N from litter and exacerbated litter P limitation during decomposition in this forest

    Responses of soil C, N, and P stoichiometric ratios to N and S additions in a subtropical evergreen broad-leaved forest

    Get PDF
    Acid deposition from the emission of nitrogen (N) and sulfur (S) has become an important factor affecting the soil nutrient balance and biogeochemical cycling in terrestrial ecosystems. The average levels of N and S deposition in the rainy area of southwestern China from 2008 to 2010 were 9.5 g N m¯² y¯¹ and 19.3 g S m¯² y¯¹, respectively. External additions of N and S fertilizers combined with high levels of acid deposition may affect the soil ecological stoichiometry in the region's widely distributed subtropical evergreen broad-leaved forest. Therefore, we investigated the responses of the soil stoichiometric ratios and enzyme activities to added N (+N), added S (+S), added N and S (+NS), and a control (Ctr) in the 0-20 cm layer in an evergreen broad-leaved forest in the rainy area of southwestern China from April 2013 to April 2015. The results showed that the soil total N (TN) concentration and N/P ratio were higher and the soil organic C (SOC) concentration and C/N ratio were lower in the fertilization treatments than the Ctr, although N and S additions did not significantly alter the soil total P (TP) concentration. The +N, +S, and +NS treatments increased the soil acid phosphatase activity and reduced the soil invertase, cellulase, catalase, and polyphenol oxidase activities. The +N and +NS treatments increased the soil urease activity and reduced soil peroxidase activity. The +S treatment reduced the soil urease activity and did not alter soil peroxidase activity. N and S additions had synergistic decreasing effects on the SOC concentration, C/N ratio, and soil cellulose and catalase activities. Moreover, structural equation models identified that N and S additions regulated the SOC, TN, and TP concentrations via shifting the activities of soil enzymes and the pathways differed between N addition and S addition. In conclusion, N and S additions decreased the SOC concentration, C/N ratio, and most soil C-cycle enzyme activities and increased the TN concentration, N/P ratio, and soil acid phosphatase activity. All these results indicated that external N and S additions combined with acid deposition increased soil N concentrations and exacerbated soil C and P limitations in this forest

    Electrical Network Operational Vulnerability Evaluation Based on Small-World and Scale-Free Properties

    Get PDF
    Assessment of electrical network vulnerability based on complex network theory (CNT) has attracted increasing attention. However, CNT focuses on analyzing the structural vulnerability and has significant limitations regarding operational vulnerability. To address the lack of a comprehensive CNT-based framework to assess operational vulnerability, a temporal-spatial correlation graph (TSCG) that considers the topological, physical, and operational characteristics of electrical networks is proposed. To better assess vulnerability, two metrics, i.e., impact ability and susceptibility of branches, based on symmetric entropy from the load redistribution mechanism of electrical networks and their corresponding TSCGs are proposed. Applications to IEEE 39-bus system, IEEE 118-bus system, and French grid demonstrate that the proposed TSCGs have distinctive features that can intuitively and simply reveal the features of impact ability and susceptibility in CNT

    Plant 45S rDNA Clusters Are Fragile Sites and Their Instability Is Associated with Epigenetic Alterations

    Get PDF
    Our previous study demonstrated that 45S ribosomal DNA (45S rDNA) clusters were chromosome fragile sites expressed spontaneously in Lolium. In this study, fragile phenotypes of 45S rDNA were observed under aphidicolin (APH) incubation in several plant species. Further actinomycin D (ActD) treatment showed that transcriptional stress might interfere with chromatin packaging, resulting in 45S rDNA fragile expression. These data identified 45S rDNA sites as replication-dependent as well as transcription-dependent fragile sites in plants. In the presence of ActD, a dramatic switch to an open chromatin conformation and accumulated incomplete 5′ end of the external transcribed spacer (5′ETS) transcripts were observed, accompanied by decreased DNA methylation, decreased levels of histone H3, and increased histone acetylation and levels of H3K4me2, suggesting that these epigenetic alterations are associated with failure of 45S rDNA condensation. Furthermore, the finding that γ-H2AX was accumulated at 45S rDNA sites following ActD treatment suggested that the DNA damage signaling pathway was associated with the appearance of 45S rDNA fragile phenotypes. Our data provide a link between 45S rDNA transcription and chromatin-packaging defects and open the door for further identifying the molecular mechanism involved

    Trichostatin A Selectively Suppresses the Cold-Induced Transcription of the ZmDREB1 Gene in Maize

    Get PDF
    Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective
    • …
    corecore